
JOURNAL OF CHROMATOGRAPHY 35 

CHROM. 4485 

THE 1DENTIL;ICATION OF A SMALL AMOUNT OF A SUBSTANCE 

OVERLAPPED BY A LARGE AMOUNT OF ANOTHER SU13STANCE 

s. TURINA AND M. I<A%lXLhN-M.4CAN 

Univcvsity ~nstitirte of Inovpnic and: Analytical Clmwistvy, UI. svc. vevolucije 8, Zagreb ( Yzrgoslavin) 

SUMMARY 

The recognition of a small amount of component B overlapped by a large amount 
of a similar component A is possible by means of numerical analysis of the chromato- 
graphic peak. The authors describe a new method based on the comparison of the 
experimental curve with the theoretical Gaussian curve. The numerical analysis has 
been successfully applied to an asymmetrical and a symmetrical peak. 

INTRODUCTION 

The distribution of any pure substance on a chromatogram can be presented 
by a curve where the abscissae are the distance from .the start, and the ordinates are 
the concentration of the observed points. In the cases of symmetrical spots the curves 
obtained are similar to the theoretical Gaussian curve. 

If the major component (A) overlaps the other component, a change in the 
shape of the curve occurs. The position and ratio of the overlapped component to the 
major component are interesting in practical work. Fig. I illustrates the three possible 
zones where the minor component B can be overlapped by the major component. 

The presence of component I3 is evident immediately in the diagram if it is in 
zone I. Its presence in zone II, however, is not evident from Fig. I. Zone III is of no 
interest chromatographically because there is no significant difference between the 
RF value of the components B and A in that zone. 

The problem investigated was the recognition of component B in zone II. A 
mathematical method was used, the amount of component A being several times 
larger than the amount of component 13. 

Many mathematical methods have been cleveloped for symmetrical peaks 
which should permit the detection of the overlapped component Bl-“. Unfortunately 
these methods are not suitable in the case of TLC where asymmetrical distribution 
curves often occur. 

In these cases it is necessary to find the regularity of the asymmetry because 
one may assume that pure substances would give the regular symmetric or asym- 
metric peaks. The asymmetry or symmetry of distribution can be arrived at by corn- 
paring the experimental curve to the ideal Gaussian curve, whose maximum is at a 
value of o on the abscissae (Pig. 2). The negative values of the abscissae are on the 
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Fig. I. Zones in the chromatographic peak of major component A where it is possible to detect the 
component B. The zones I and III (cross-hatched) were not of interest for this investigation. Only 
zone II is of interest for mathematical interpretation. 

left side of the curve and positive values of abscissae on the right. The standard 
deviation (a) is the abscissa unit. The value 0.4 is the ordinate maximum. Before 
making the comparison, the experimental curve must be normalised, i.e. transformed 
into a curve in which the. maximum value is 0.4. This can be done by changing the 
ordinate values as follo&: 

0.4 
ythoor - = ycxp 

Ymnx. 
(1) 

Fig. 2. The curve obtained from smoothed data (EC), the normalised curve (NC) ancl theoretical 
Gaussian cnrve (TC). The hatched lines shows the course of the mathematical operation. The 
smoothed data are normalised and compared with the thcorciical values. 
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Symmetric distribution 

Asymmetric distribution _____w. 
tn front direction 

_._._,_ Asymmetric distribution 
in start direction 

-3- 

Fig, 3. Diagram obtained by comparison of the normalised curve and the thcorctical curve (Fig. 2). 
The straight line shows the symmetrical distribution of the spot; the concave ancl convex lines 
represent asymmetric distribution. 

For every abscissa value on the experimental curve there is a corresponding 
abscissa value on the theoretical curve, but the left side of the experimental curve 
must be compared with the left side of the theoretical curve, and vice VBISU. 

The abscissae values of the experimental and corresponding theoretical curves 
give the coordinates which, when drawn graphically, give the line of asymmetry 
(Fig. 3). The values of the abscissae in Fig. 3 are the same as in the experimental 
curve, and the abscissae of the theoretical curve are ordinates. 

A symmetrical distribution would give a straight line in the diagram, but if 
the concentration maximum of the substance is towards the front of the spot, a 
concave curve is obtained; if it is towards the rear of the spot, a convex curve is ob- 
tained. 

It is from this line, which represents the regularity of distribution, that it is 
possible to detect in a simple manner the position of another component B. In the 
case of symmetrical distribution the presence of the component I3 is obvious because 
at that position the straight line diverges. 

If the lines obtained are not straight lines, the detection of component B is not 
directly possible, and mathematical methods must be used; hence we used numerical 
analysis. 

Every regular curve can be approximately represented by the equation4: 

f(x) = a0 + a+ + as+ + a@ + a4x4 + . ., (2) 

The equation for a straight line being: 

f(x) = a, + al% 

(3) 
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If one takes the difference between the Xthcor ordinates at equal distances 
along the abscissae, the first differences (Al) give a constant value and the second 
differences (As), i.e. the differences between the A1 values, are or have values very 
close to zero. The points at the position of component B give values significantly 
greater than zero for the second differences. 

The curve representing a slight asymmetry of distribution can be very well 
approximated by the equation : 

f(N = a0 + alx + a2x2 (4) 

The first differences (Al) are given by : 

fr(x) = a1 + za,x (straight line) (5) 

A2 give a constant : 

fII(x) = 2a, (6) 

and 43 give values very near zero : 

fIrI CW 0 (7) 

The curve presented by a very asymmetric spot can be approximated by the 
equation : 

f(X) = a0 + al% + a2x2 + a3x3 (8) 

The fourth differences give values that are close to zero: frv(x) w o (9) 

In those cases where there is a divergence from zero the overlapped component 
B will be present at that position. 
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Fig, 4. Diagram showing the data (0) of arabinosc spot asymmetry without smoothing, snd’the 
corresponding data after numerical analysis. (A), first differences; (a), second differences. It 

: shows too many deviations. 
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All the mathematical operations may be carried out by means of a mini-com- 
puter of a type that is in common use in analytical laboratories. 

EXPERIMENTAL 

The substances investigated were the sugars arabinose and rhamnose. 
Chromatography was carried out on plates 20 x 20 cm (E. Merck) precoated 

with a layer of Silica Gel H. The developing solvent was isopropanol-trichloroethy- 
lene-acetic acid (3 : I : I). The substance was applied at the start in the form of a line. 

Visualisation was by spraying with 2% aniline in acetic acid + 2% diphenyl- 
amine in acetic acid + 85% phosphoric acid (5 :5 : I) (ref. 5). 

The corresponding peaks were measured by means of a Photovolt TLC densito- 
meter. 

Smoothing of the data obtained was necessary to eliminate the deviations 
caused by non-ideal conditions of the chromatographic process and non-ideal function 

Pig. 5. Diagram of nrabinosc spot asymmetry obtained nftcr smoothing data (O), and the cor- 
rcsponcling data after numerical analysis. (A), first cliffcrcnccs; (a), seconcl cliffercnccs. It shows 
only small deviations. 

of the TLC densitometer. In numerical analysis the error function cannot be establish- 
ed when the deviations are too great. For example, the numerical analysis of non- 
smoothed data for arabinose shown in Fig. 4 contrasts with the numerical analysis 
of smoothed data shown in Fig. 5, The difference can easily be seen. In Fig. 6, the 
scheme is shown for linear smoothing of the data by four degrees (Programme I). 

It is carried out according to the following equations: 
The first degree: 

91+y2 
Yl-2 = 2 ;ya-3 = 

Y2 + Y3 

2 
(10) 
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Fig. 6. Scheme of the course of operation of the mini-computer (Cclatron Scr-2) for quadruple data. 
smoothing (Programmc I). 

The second degree : 

Y2un = 
Yl-a + yz-3 

2 

Y3W) = 
Y2-3 + Ys-4 

2 

The third degree: 

Yam)-sm, = 
YZCII) + YSCII) 

2 

Y3(II)-_q(II) = 
%#I) + y&II) 

2 

(11) 

(14 
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The fourth degree : 

Y3(IV) = 
YzCII)-3(II, + y3(II)--q(II) 

2 

Y4(Iv) = 
Y3(11)--4(11) + y4(IIh(II) 

2 
(13) 

The principle of smoothing is illustrated in Fig. 7. The smoothed data were 
recorded on the paper-tape (LBS) and this was fed to tile computer as the data for 
programme 2 (Fig. S). 

l - Non smoothed data 

0 lst smoothing of data 

Q 2nd smoothing of data 

3rd smoothing of data 

Pig. 7. The data smoothing process. The solid line shows the lint obtain4 with non-smoothccl 
data and the brolccn line reprcseds the data after quadruple smoothing. 

Programme 2 follows the mathematical operations described earlier. The com- 
puter gives the printed result on a sheet. 

The numerical analysis of the smoothed data for arabinose is presented in 
Table I. The 1st column gives the position of the point observed --on- the spot and 
corresponds to the abscissae in the diagram (Figs. 2 and 3). The 2nd column gives the 
smoothed data corresponding to the concentration at the point observed. The data 
of the normalised curve (ymax. = 0.4) are in column 3. The 4th column gives the corre- 
sponding abscissae values (Xthcor) of the theoretical Gaussian curve according to the 
equation : 

Xthcor = rt j/2 (In -& - In ythcor) (14) 
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Fig. 8. The flow cliagram for the numcri+ analysis (Program 2). 

Before the maximum (y M 0.4) the computer gives negative values of Xtheor, 
and then positive values after the maximum is passed. 

Columns 5, 6, ‘9, 8 and g give the difference between the data in the respective 
preceding columns and represent the numerical analysis of the xtheor data. 

‘Large, deviations appear in zone III (Fig. I) during the numerical analysis 
(Figs. ‘4 and 5) because small differences of Yfh@or near Ymsx. cause great differences 
in X&&r. Therefore data from the centre (framed part) must be eliminated. 

In ‘Table II, the numerical analysis of the smoothed data for the rhamnose 
spot is presented. The data in position D deviate from zero very significantly and it is 
possible to conclude that at this point in the spot another substance is present. 
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TABLE: I 
. 

TREATED DATA FOR ARABINOSIZ” 

The data in the centrc (framed part) correspond to zone III. and they are of no interest for this 
investigation. The divergences from zero arc not significant, and’ therefore there is no other 
component present in zone II. 
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R Obtainccl by the mini-computer Cclatron Scr-2. 
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TABLE II 

TREATE’D DATA FOR RI-IAMNOSEa 

The data in the ccntre (framed part) represent zone III which is of no interest for this investigation. 
There are significant divergences from zero in columns 6. 7 and 8 which have their maximum for 
x = 160 : this is the position of the minor component B. 
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0.0596 
- 0.0057 
- 0.0045 

0.0037 
0.0023 
0.001 I 

-0.0376 
0.0454 

--0.0153 
0.0468 

-0.0832 
0.1074 

-0.1627 

- 

0 Obtained by the mini-computer Celatron Set-2. 
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